精品水蜜桃久久久久久久,成人国产精品动漫欧美一区,亚洲爆乳精品无码一区二区,精品人妻系列无码人妻免费视频,6080yyy午夜理论AA片,动漫精品无码一区二区三区,日韩欧美国产传媒第一区二区,国产91高潮操逼视频流白浆,97国内少妇偷人精品视频免费 ,亚洲国产成人精品久久久国产成人一区二区三区综合区精品久久久中文字幕一区,亚洲精品久久久一区黄无码国产a一级无码毛片一区二区三区,久久久无码国产精精品免费国国产欧美日本韩高清视频一区二区三区免费式,国产成人无码精品久久久免费,精品欧美国产一区二区三区不卡 ,国内精品久久久久久久影视麻豆|国产精品无码亚洲|无限国产资源好片2018|精品91自产拍在线观看|精品乱子伦一区二区三区掼蛋

麻省大學波士頓校區(qū)Prof. Ping Chen 學術(shù)講座 2014-07-15


【講座題目】 Semantic Association Mining


【講座嘉賓】 Prof .Ping Chen, University of Massachusetts Boston


【講座時間】7月21日(星期一)下午15:00-16:30


【講座地點】 bwin必贏唯一官網(wǎng)315教室


【摘要】  Discovery of risk factors affecting human health is very important. To medical researchers, these risk factors will provide valuable 


reasoning and modeling mechanism that are fundamentally important to medical and health research. In practice, health-related associations (risk factors) can provide basis for clinical decision making, health policy, and public guidance that directly impact 


health of individuals, families, communities, and populations. As the capability to capture and store medical data grows rapidly, 


the need for effective and efficient computation tools that facilitate such discoveries is high and increasing. This project aims to build an 


efficient medical association discovery system to extract significant, valid, non-redundant, and previously unknown associations 


of attributes (risk factors) from medical datasets. The goal and main innovations of this project are:


·         Integrating our knowledge-based approach with objective association mining method to generate only non-trivial, non-


redundant, valid, and previously unknown associations. These associations will serve as hypotheses and be further validated by biostatistic


 methods, which fundamentally changes current subjective formation of hypotheses to objective formation and discover radically different 


new knowledge; 


·         Building a research-grade medical association discovery system with a full suite of efficient and effective components: User Knowledge Acquisition 


Component, Semantic Network Building Component, Non-redundant Association Generation Component, Association Categorization 


Component, and Statistical Validation Component.


呼玛县| 青铜峡市| 建阳市| 绥德县| 读书| 务川| 利川市| 淮阳县| 吴江市| 顺平县| 宜良县| 清苑县| 保定市| 临西县| 瓦房店市| 津市市| 淮南市| 安平县| 凤阳县| 涡阳县| 扬州市| 铜梁县| 芦山县| 资中县| 广德县| 延寿县| 吉水县| 威远县| 桑植县| 平山县| 潢川县| 宁津县| 东阿县| 舟曲县| 连城县| 淳化县| 广昌县| 巫山县| 屯门区| 日照市| 翁牛特旗|